Advances in Single-molecule Nucleic Acid Sequencing

نویسندگان

  • Christopher J. Lacenere
  • Padmaja Juvvadi
چکیده

The ability to quickly and accurately obtain sequence information from single molecules of DNA and RNA has far-reaching implications for our understanding of biology. In the work presented here, we have made several advances in the area of single-molecule DNA and RNA sequencing. Specifically, in attempting to increase the read length of DNA polymerase, we have assayed several custom synthesized fluorescent nucleotides containing longer dye–base linkers. We have validated the efficacy of these nucleotides at both bulk and single-molecule levels. Furthermore, we have screened several commercially available DNA polymerases for their ability to incorporate these nucleotides. We also show that reverse transcriptase is able to synthesize a complimentary DNA strand of 28 bases in length from an RNA template, using solely fluorescently labeled nucleotides. Additionally, we show that reverse transcriptase is able to incorporate a fluorescently labeled nucleotide into an RNA template at the singlemolecule level. Finally, we demonstrate automated reagent exchange for our singlemolecule sequencing system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Helium-Neon Laser and Sodium Hypochlorite on Calf Thymus Double-Stranded Deoxyribonucleic Acid Molecule: An in Vitro Experimental Study

Introduction: Low-energy helium-neon (He-Ne) laser beam lightis used in combination with sodium hypochlorite (Na2HOCl3) for clinical purposes. Regarding this, the present study aimed to investigate the effect of He-Ne laser (632.8 nm) and sodium hypochlorite on the calf thymus double-stranded deoxyribonucleic acid (ctdsDNA) molecule.  Materials and Methods: For the purpose of the study, ctdsDNA...

متن کامل

Nanopores and nucleic acids: prospects for ultrarapid sequencing.

DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new meth...

متن کامل

Next generation sequencing and urologic cancer

Nucleic acid sequencing is a method for identifying the exact nucleotides present in a given DNA or RNA molecule. After completion of the first human genome sequence from the Human Genome Project by f irstgeneration sequencing (also known as Sanger sequencing), the use of nucleic acid sequencing has greatly increased in research and clinical investigations worldwide, with a resultant demand for...

متن کامل

Advances in Nucleic Acid Detection and Quantification

The last decade has seen many changes in molecular biology at the bench, as we have moved away from a primary goal of cataloguing genes andmRNA towards techniques that detect and quantify nucleic acid molecules even within single cells. With the invention of the polymerase chain reaction (PCR), a nucleic acid sequence could now be amplified to generate a large number of identical copies, and th...

متن کامل

Single-molecule sequencing: sequence methods to enable accurate quantitation.

Helicos Single-Molecule Sequencing provides a unique view of genome biology through direct sequencing of cellular and extracellular nucleic acids in an unbiased manner, providing both quantitation and sequence information. Using a simple sample preparation, involving no ligation or amplification, genomic DNA is sheared, tailed with poly-A and hybridized to the flow-cell surface containing oligo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006